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Abstract:  Linear discriminant analysis (LDA) is one of the most popular supervised dimensionality reduction 

(DR) techniques used in computer vision, machine learning, and pattern classification. However, LDA only 

captures global geometrical structure information of the data and ignores the geometrical variation of local data 

points of the same class. In this paper, a new supervised DR algorithm called local intraclass geometrical 

variation preserving LDA (LIPLDA) is proposed. More specifically, LIPLDA first casts LDA as a least squares 

problem, and then explicitly incorporates the local intraclass geometrical variation into the least squares 

formulation via regularization technique. We also show that the proposed algorithm can be extended to non-

linear DR scenarios by applying the kernel trick. Experimental results on four image databases demonstrate the 

effectiveness of our algorithm. 
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1 Introduction 
Appearance-based image recognition has attracted 

considerable interest in computer vision, machine 

learning, and pattern classification [1-4] in the past 

two decades. It is well known that the dimension of 

an image is usually very high. For example, an 

image with a resolution of 100×100 can be viewed 

as a 10000-dimensional vector. High dimensionality 

of feature vector has become a critical problem in 

practical applications. The data in the high-

dimensional space is usually redundant and may 

degrade the performance of classifiers when the 

number of training samples is much smaller than the 

dimensionality of the image data. A common way to 

resolve this problem is to use either supervised or 

unsupervised DR techniques. Principal component 

analysis (PCA) is a popular unsupervised DR 

algorithm, which performs DR by projecting the 

original m-dimensional data onto the l-dimensional 

(l<<m) linear subspace spanned by the leading 

eigenvectors of the data’s covariance matrix. LDA 

searches the projection axes on which the data 

points of different classes are far from each other 

while requiring data points of the same class to be 

close to each other. Since discriminating 

information is encoded, it is generally believed that 

LDA is superior to PCA [2]. However, when 

applying LDA to real-world applications, there are 

two problems needed to be carefully considered: 1) 

the singularity of within-class scatter matrix; and 2) 

the local geometrical variations. 

In the past, many LDA extensions have been 

developed to deal with the singularity of within-

class scatter matrix, among which the most 

representative methods are Fisherface [3], enhanced 

Fisher linear discriminant models (EFM) [4], regul-

arized discriminant analysis (RDA) [5], LDA/QR 

[6], maximum margin criterion (MMC) [7] and two-

dimensional discriminant analysis(2DLDA) [8]. 

Although these methods have been shown to be 

effective in experiments, their generalization 

capability on testing data cannot be guaranteed. The 

main reason is that they only capture global 

geometrical structure information of the data via 

equally minimizing the distance among data points 

from the same class and ignore local intraclass 

geometrical variations. It is just the local intraclass 

geometrical variation that characterizes important 

modes of variability of data and helps to alleviate or 

even avoid the over-fitting problem, which will 
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improve the generalization ability of the algorithms 

[9-11]. 

Recently, a number of graph-based DR methods, 

which are also called manifold learning based 

discriminant approaches, have been successfully 

applied and became important methodologies in 

computer vision, machine learning and pattern 

classification. Some well known graph-based 

algorithms are locally linear embedding (LLE) [12], 

Isomap [13], Laplacian eigenmap [14], graph 

embedding [15], and locality preserving projection 

(LPP) [16]. All these algorithms were developed 

based on the assumption that the data lie on a 

manifold which can be modeled by a nearest-

neighbor graph that preserves the local geometrical 

structure of the input space. Different from LLE, 

Isomap and Laplacian eigenmap, LPP is a linear 

algorithm which is quite simple and easy to realize, 

thus has received much attention in the research 

community [17-26]. As to the problem of local 

geometrical variations when applying LDA, 

however, there are only a few articles about using 

LPP to deal with it have been published so far, such 

as local LDA (LocLDA) [19], local Fisher 

discriminant analysis (LFDA) [25], and Graph-

based Fisher analysis (GbFA) [26]. Though 

LocLDA integrates LDA and LPP in an unified 

framework, it disregards label information in the 

LPP formulation, which is in contradiction to the 

supervised nature of LDA. LFDA is still a LDA 

technique with the redesigned LPP-based local 

within-class and local between-class scatter matrices. 

GbFA applies Fisher criteria to the intrinsic graph 

and penalty graph, i.e., finds projection axes on 

which the intrinsic graph is minimized while the 

penalty graph is maximized. Different from generic 

LDA, both LFDA and GbFA focus only on the local 

structure and disregard the global structure of the 

data. 

Motivated by the ideas in Refs.[10,16,19,25,26], 

in this paper, we will develop a new supervised DR 

algorithm, called local intraclass geometrical 

variation preserving LDA (LIPLDA), to integrate 

both global geometrical structure information and 

local intraclass geometrical variations of the data. 

More specifically, we cast LDA as a least squares 

problem based on spectral regression and use a 

modified locality preserving projection as a 

regularization term to model the local intraclass 

geometrical variations. The use of locality 

preserving projection as regularization term has 

been studied in [27, 28] in the context of regression 

and SVM. In [28], a tuning parameter was 

introduced to balance the tradeoff between global 

and local structures.  

The rest of the paper is organized as follows. In 

Section 2, we give a brief review of LDA. Section 3 

introduces spectral regression discriminant analysis, 

and our LIPLDA algorithm is presented in Section 4. 

Section 5 extends LIPLDA to non-linear DR 

scenarios using kernel tricks. Extensive experiments 

for object recognition are conducted in Section 6 to 

verify the efficiency of our methods. Conclusion 

and discussion are presented in Section 7. 

 

 

2 A Brief Review of LDA 
In classification problems, given a set of n d-

dimensional samples x1, x2,……xn, belonging to C 

known pattern classes, LDA seeks direction v on 

which the data points of different classes are far 

from each other while requiring data points of the 

same class to be close to each other [29], i.e., LDA 

maximizes the objective function J(v) (also known 

as the Fisher’s criterion ) as follows 
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where μ is the total sample mean vector, 
k

μ is the 

centroid of the k-th class, mk is the number of 

samples in k-th class, and 
k

ix is the i-th sample in 

the k-th class. The matrices BS and WS are often 

called the between-class scatter matrix and within-

class scatter matrix, respectively. 

By defining the total scatter matrix   S T  
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WBT SS  S  . The objective function (1) is then 

equivalent to 
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Maximizing the above function is equivalent to 

finding the eigenvectors of the following 

generalized eigen-problem associated with 

maximum eigenvalues 

vS  vS TB                                                            (3) 

Since the rank of BS is bounded by C-1, there 

are at most C-1 eigenvectors corresponding to non-

zero eigenvalues [29]. 

The solution of Eq.(3) can be obtained by 

applying an eigen-decomposition on the matrix 
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BT SS
1

, given that TS is nonsingular. However, 

when the number of features is larger than the 

number of samples, TS is singular and 
1

TS doesn’t 

exist. In the past few decades, various approaches 

have been proposed to solve this singularity 

problem and all of them can be divided into two 

categories: 1) applying eigen-value decomposition 

or singular value decomposition to the data matrix, 

which is computationally expensive in both time 

and memory; and 2) casting LDA as a least squares 

problem based on spectral regression [30], which 

can be efficiently solved by various iterative 

algorithms (e.g., LSQR [31], [32]). By casting LDA 

as a least squares problem, we can also generalize 

LDA by incorporating various additional 

information, e.g., local intraclass geometrical 

variation, into the framework of least squares 

problem as regularization terms. 

 

 

3 Spectral Regression Discriminant 

Analysis 
In this section, we use graph embedding to 

reformulate LDA and show how LDA is connected 

to least squares problem. We start from analyzing 

the between-class scatter matrix BS . 

Let μxx  ii  and ],,[ 11

k

m

kkk

k
xxxX   

denote the centered data sample and the centered 

data matrix of the k-th class, respectively. We see 

that 
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where 
k

W is an kk mm  matrix with all elements 

equal to km/1 . If we define ],......,[ 1 C
XXX  as 

the centered sample matrix and a matrix W as 
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we have 
T

B XWX  S                                                          (6) 

Similarly, the total scatter matrix and within-

class scatter matrix can be rewritten as 
Tn

i

T

iiT XXμxμx  S  1
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If we take W as the edge weight matrix of a 

graph G, its entry Wij is the weight of edge joining 

vertices i and j. Wij =0 indicates there is no edge 

between vertices i and j. Thus L = I – W is called 

graph Laplacian. 

By substituting Eq.(6) and Eq.(7) into Eq.(3), we 

obtain the following generalized eigen-problem 

vXX  vXWX
TT

                                             (8) 

In [30],[33], Cai et al. developed an efficient 

two-stage approach to solve the generalized eigen-

problem (8), which is based on the following 

theorem. 

Theorem 1. Let y  be the eigenvector of eigen-

problem 

yyW                                                               (9) 

with eigenvalue  . If yvX 
T

, then v  is the 

eigenvector of eigen-problem vXX  vXWX
TT

  

with the same eigenvalue  .  

Theorem 1 shows that instead of solving the 

eigen-problem (8) directly, the LDA basis functions 

can be obtained through the following two steps: 

1) Solve the eigen-problem in (9) to get y . 

2) Find v  which satisfies yvX 
T

. 

In reality, such v  may not exist. A possible way 

is to find a v  that fits yvX 
T

in the least squares 

sense: 
2

 minarg yvXv
v


 T

                                     (10) 

For the cases that the number of samples is 

smaller than the number of features, the above 

minimization problem is ill-posed. The most 

popular way to deal with the ill-posed problem is to 

impose a penalty on the norm of v , we have 












  minarg
2

2

vyvXv
v


T

                 (11) 

Since W is a block-diagonal matrix with C 

blocks, and the rank of each block is 1, so there are 

exactly C eigenvectors, Cyyy ,, 21 , for the eigen-

problem yyW  . As a result, there are C 

optimization problems like Eq.(11) needed to be 
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solved. For simplicity, all these optimization 

problems can be written in a single matrix form as 
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where ],,[ 21 CvvvV  , ],,[ 21 CyyyY  , 

and 
F

   is the Frobenius norm of a matrix. 

 

 

4 Local Intraclass Geometrical Varia-

tion Preserving LDA 
By casting LDA as a least squares problem, 

additional information of data sets can be 

incorporated into LDA as regularization terms. In 

this section, we show how to build a regularization 

term for the local intraclass geometrical variation 

and how to solve the final optimization problem. 

We start from modeling local intraclass geometrical 

variation. 

 

 

4.1 Local Intraclass Variation Modeling 
LDA aims to capture global geometrical structure 

information and ignores the geometrical variation of 

local data points of the same class. However, in 

many real-world applications, the local intraclass 

geometrical variation is more important. In this 

paper, we use a modified LPP to model the local 

intraclass geometrical variation. The complete 

derivation and theoretical justifications of LPP can 

be traced back to [16]. LPP seeks to preserve local 

structure and intrinsic geometry of the data. The 

objective function of LPP is as follows 

 
ji

ijji Syy
,

2)(min
2

1
                                     (13) 

where yi is the one-dimensional projection of sample 

xi and the matrix S is a similarity matrix whose 

element Sij representing the similarity between 

samples xi and xj. A possible way of defining S is 
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where is sufficiently small , and 0 . Here   

defines the radius of the local neighborhood. Or 
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where )( jki N xx  implies that ix is among the k 

nearest neighbors of xj or vice versa [14], [17]. With 

the similarity matrix S defined in Eq.(14) or Eq.(15), 

the objective function (13) incurs a heavy penalty if 

neighboring points are mapped far apart in the one-

dimensional output space. 

From the definition of similarity matrix S, we 

see that neither Eq.(14) nor Eq.(15) takes sample 

label into consideration, i.e., the samples in the local 

neighborhood are considered to be within the same 

class, while the samples in the nonlocal region are 

considered to be in different classes. In reality, 

however, as illustrated in Fig.1, such assumption 

does not certainly hold. In the figure, the top left 

circle and the down right circle do not belong to the 

classes of their local neighbors. If the task at hand is 

classification, the desired projection axes should be 

the ones on which the circles are far from their 

nearest neighbors. However, with the similarity 

matrix S defined in Eq. (14) or Eq. (15), the 

objective function of LPP, i.e., Eq.(13), tends to 

push the circles closer to their nearest neighbors. 

 

 
Fig.1 Illustration of local intraclass geometrical 

variation 

 

In order to model the local intraclass 

geometrical variation more effectively, we redefine 

the similarity matrix S whose element is given by 
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where iC and jC denote the class label of ix and jx , 

respectively. Formulas (16) and (17) indicate that, 

even if two points ix and jx from different classes 

are close to each other, the objective function 

doesn’t incur a heavy penalty if they are mapped far 

apart in the one-dimensional output space because 

the corresponding ijS is zero. 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Di Zhang, Yun Zhao, Minghui Du

E-ISSN: 2224-3402 104 Issue 4, Volume 10, April 2013



 

 

Supposing there are C one-dimensional 

projections of the form Ciy T

i ,1,  xv , by 

substituting xv
T

iy  into Eq.(13) and combining all 

these functions together into a single matrix form, 

following some simple algebraic steps, we see that 
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where ],,[ 21 CvvvV  . Since the operation of 

trace is linear and ijS  is a scalar, Eq. (18) can be 

easily simplified as 
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where ),,(diag 11 nnDD D ,  
iSD

n

j ijii (
1

),,1 n and SDL  is the Laplacian matrix. 

 

4.2 The LIPLDA algorithm 
The local intraclass geometrical variation can be 

incorporated into the least squares formulation of 

LDA as a regularization term defined in Eq.(19). 

Given a matrix ],,[ 21 CyyyY  , whose column 

vector iy is the eigenvector with eigenvalue i for 

the eigen-problem yyW  , our LIPLDA 

algorithm calculates an optimal projection matrix V 

from the following optimization problem: 
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where  (0,1)  is a tuning parameter that controls 

the tradeoff between global geometrical structure 

and local intraclass geometrical variation. 

By differentiating the right part of Eq.(20) with 

respect to V, setting the derivative equal to zero, 

after some manipulation, we get 

YXVVXLXVXX   )1( 
TT

            (21) 

Because matrix IXLXXX  )1(  
TT

is 

nonsingular, the optimal projection matrix V can be 

computed as 

  YXIXLXXXV
1

 )1(


 
TT

           (22) 

 

Algorithm:  LIPLDA 

Summarizing the previous sections, the LIPLDA 

algorithm is as follows 

Training: 

1) Construct similarity matrix S using either 

Eq.(16) or Eq.(17). 

2) Solve the eigen-problem Eq.(9) to get Y . 

3) Use Eq.(22) to compute V. 

4) Obtain a feature matrix Z of the training data by 

XVZ
T . 

Test: 

1) For a test sample x, center it by μxx  , 

where μ is the centroid of training data. 

2) Obtain a feature vector of the test sample by 

xVz
T . 

 

5 Kernel LIPLDA for non-linear DR 
The first kernel-based DR method, kernel principal 

component analysis (KPCA) was originally 

developed by Scholkopf et al. in 1998 [34], and 

kernel Fisher discriminant analysis (KDA) was 

introduced by Mika et al. in 1999 [35]. Subsequent 

research saw the development of a series of KDA 

algorithms (see Baudat and Anouar [36], Lu et al. 

[37], Yang et al. [38], Cortes et al. [39], and Lin et 

al. [40]). Because of its ability to extract the most 

discriminatory nonlinear features, KDA has been 

found to be very effective in many real-world 

applications. Compared to other methods for non-

linear feature extraction, kernel-based DR methods 

have the advantage that they do not require non-

linear optimization. Here we show how LIPLDA 

can be extended to non-linear DR scenarios. 

 

5.1 A Brief Review of KDA 
The idea of KDA is to extend LDA to a nonlinear 

version by using the so-called kernel trick [36]. 

Assume that we have a nonlinear mapping )( that 

maps a point in a d-dimensional input space into a r-

dimensional feature space, i.e., 
rd RR:                                                         (23) 

Here, the dimension of the feature space r can 

either be finite or infinite. Let k

μ  
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class, the global centroid and the centered data 

sample, respectively, in the feature space. For the 

new between-class scatter matrix in the feature 

space, following some simple algebraic steps, we 

see that 
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where ])(,,......)([)( 1

k

m

kk

k
xxX    is the 

centered data matrix of the k-th class in the feature 

space. If we define ])(,......,)([)( 1 C
XXX    as 

the centered sample matrix in the feature space, we 

have 
T

B )()( XWX  S                                              (24) 

Similarly, the new total scatter matrix and 

within-class scatter matrix in the feature space can 

be rewritten as 
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By replacing BS and TS in Eq.(2) with 


BS  and 



TS , respectively, we obtain the corresponding 

objective function in the feature space as follows 

vSv
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However, direct calculation of v by solving the 

corresponding GED problem of Eq.(26) is difficult 

because the dimension of v is not known and 

furthermore it could be infinite. To resolve this 

problem, instead of mapping the data explicitly, an 

alternative way is using dot-products of the training 

samples to reformulate the objective function 

[35,36]. 

Clearly, the optimal projection vector v is a 

linear combination of the centered training samples 

in the feature space, i.e., 

αXx  v )()(
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nT

n R],,[ 21   α . 

 

Considering that the projection of a centered 

sample )( ix   onto the vector v in the feature space 

is obtained by the inner product of v and the 

centered sample itself, the projection of the entire 

training data is obtained by 

KαXXαXv
TTTT  )()()(                      (28) 

where )()( XXK 
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 is a centered symmetric 

kernel matrix whose (i,j) element is ),( jik xx  
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i xx  . Then, for the objective function (26), 

following some simple algebraic steps, we see that 
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The optimal α’s can be obtained by solving the 

following GED problem: 

αKKαKWK                                               (29) 

By generalizing the idea of Theorem 1 to KDA, 

we have the following theorem 

Theorem 2. Let y  be the eigenvector of eigen-

problem yyW   with eigenvalue . If yαK  , 

then α  is the eigenvector of eigen-problem in 

Eq.(29) with the same eigenvalue  . 

Proof: With yαK  and yyW  , following 

some algebraic steps, the left side of Eq.(29) can be 

rewritten as 

αKKyKyKyWKαKWK    

Thus, α  is the eigenvector of eigen-problem in 

Eq.(29) with the same eigenvalue . 

                                                                                  □ 

Following the same two-stage approach as 

mentioned in Section 3, the KDA solution α  can be 

obtained by solving the following regularized least 

squares problem 

   minarg
22

αyαKα
α




                      (30) 

Again, since there are total C optimization 

problems like Eq.(30) needed to be solved, we can 

combine them into a single matrix form as 

   minarg
22

FF
AYAKA

A




                 (31) 

where ],,[ 21 CαααA  . 

 

5.2 Kernel Local Intraclass Geometrical 

Variation Modeling 
Since the projection of a centered sample 

)( ix  onto the vector v in the feature space is 
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obtained by the inner product of v and the centered 

sample itself, we can similarly define an objective 

function of LPP in the feature space as follows 
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where ],,[ 21 CvvvV  , ,,(diag 11 DD  

)nnD , ),,1(
1

niSD
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j ijii  
and SDL  . 

Substituting KAXV
TT )(  into Eq.(33), we 

have the final form of the objective function of LPP 

in the kernel space 

 AKLKA
T trmin                                             (34) 

 

 

5.3  Kernel LIPLDA 

Given a matrix ],,[ 21 CyyyY  , whose column 

vector iy is the eigenvector with eigenvalue i for 

the eigen-problem yyW  , our kernel LIPLDA 

(LIPKDA) algorithm calculates the matrix A, whose 

entries are the expansion coefficients of the optimal 

transformation matrix V, from the following 

optimization problem: 

   tr)1( minarg
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where  (0,1)  is a tuning parameter that controls 

the tradeoff between global geometrical structure 

and local intraclass geometrical variation in the 

feature space. 

By differentiating the right part of Eq.(35) with 

respect to A, setting the derivative equal to zero, 

after some manipulation, we get 

YKAAKLKAK   )1(
2

                 (36) 

To solve Eq.(36), we need the following 

theorem 

Theorem 3. Matrix IKLKK  )1(
2

  is 

nonsingular. 

Proof: Let KLKKF )1(
2

 . By the 

definition of Laplacian matrix L, it is easy to verify 

that L is a symmetric positive semi-definite matrix.    

With Schur decomposition, we get 

T
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where ),,diag( 21 n Λ is a diagonal matrix. 

Let 
2/1

QΛP  , we have 
T

PPL  . Thus F can be 

rewritten as 

 T
T

PKPKK

KPPKKF

)1(    

)1(

2

2








                               (38) 

It follows that F is symmetric positive definite. 

By Cholesky decomposition, F can further be 

simplified as 
T

GGF                                                              (39) 

Let 
T

VUΣG   be the singular value 

decomposition of G, we have 

T

TT

UIΣU

IUUΣIGGIF

)  (            

    

2

2








             (40) 

Thus 

IΣUIΣUIKLKK   )  ( )1( 222

  T  

which is nonsingular because 0 . 

                                                                                  □ 

With Theorem 3, the optimal solution can be 

computed as 

  YKIKLKKA
12

 )1(


                  (41) 

 

Algorithm:  LIPKDA 

Summarizing the previous sections, the 

LIPKDA algorithm is as follows 

Training: 

1) Generate a centered kernel matrix 

)()( XXK 
T

 from the training samples. 

2) Solve the eigen-problem Eq.(9) to get Y . 

3) Use Eq.(41) to compute A. 

4) Obtain a nonlinear feature matrix Z of the 

training data by KAZ
T . 

Test: 

1) For a test sample x, generate a centered kernel 

vector    T

nkkk  ),(,,),(,),( 21 xxxxxxk(x)  , 

where )()(),( i

T

ik xxxx  . 

2) Obtain a nonlinear feature vector of the test 

sample by k(x)Az
T . 

In LIPKDA, the kernel function ),( k plays an 

important role and the essential property of the 

kernel function is that it should be decomposed into 

an inner product of a mapping )(  to itself, i.e., 

)()(),( j

T

ijik xxxx  . However, it is obvious-

sly that not all the functions meet this property. To 

be a proper kernel function, a function should meet 
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the so-called Mercer’s condition [41] and the two 

most popular kernels are the polynomial kernel 
d

j

T

iji ck )(),(  xxxx and the Gaussian RBF 

kernel )/exp(),(
2

jijik xxxx  in which c, 

d, and  are the kernel parameters. 

In the training of LIPKDA algorithm, the most 

time consuming part is Step 3 where the matrix 

inverse problem should be solved. Because the 

matrices K and L in Eq.(41) are 
nn

R , the comput-

ational complexity of Step 3 is normally O(n
3
). 

Nevertheless, it is unnecessary to compute the 

matrix inverse involved in Eq.(41) directly. The 

detailed efficient procedure is discussed as follows. 

Since ],,[ 21 CαααA  , ],,[ 21 CyyyY  , let 

IKLKKH  )1(
2

  and  ,,[ 21 ppP   

],,[] 21 CC yXyXyXp  , Eq.(41) can be decom-

posed into the following C linear equations: 

Ciii ,2,1,  pHα                                        (42) 

There are many efficient iterative algorithms 

have been proposed to solve Eq.(42). In this paper, 

we use LSQR algorithm, an iterative algorithm 

designed to solve large scale sparse linear equations 

and lest squares problems [31]. In each iteration, 

LSQR needs to compute two matrix-vector products 

[32]. The computational complexity of LSQR for 

solving Eq.(42) is normally O(n
2
+n). If the sample 

number is large and parallel computation is 

applicable, using LSQR algorithm will be more 

efficient than performing matrix inverse directly. 

 

 

6 Experimental results 
In this section, two experiments are designed to 

evaluate the performance of the proposed algorithms. 

The first experiment is on face recognition and the 

second is on artificial object recognition. Face 

recognition is performed on three face databases 

(Yale, ORL, and PIE) and artificial object 

recognition is performed on COIL20 image database 

[42]. In all the experiments, we use Euclidean 

metric and nearest neighbor classifier for 

classification due to the simplicity. In order to get a 

fair result, for all experiments, we adopt a two-phase 

scheme: 1) perform model selection, i.e., to 

determine the proper parameters for all the involved 

algorithms; and 2) reevaluate all the methods with 

the parameters got in the phase of model selection. 

Both the two phases are carried on the same data 

sets but under different partitions. The 

implementation environment is the personal 

computer with Intel(R) Core(TM)2 Duo CPU P8700 

@ 2.53GHz, 4 GB memory. 

Eight DR algorithms, namely, LDA, LPP [16], 

LocLDA [19], KPCA [43], KDA [43], complete  

 

kernel Fisher discriminant analysis (CKFD) [38], 

the proposed LIPLDA and LIPKDA are tested and 

compared. To perform a fair comparison, we split 

these eight methods into two groups: linear group 

(including LDA, LPP, LocLDA, and LIPLDA) and 

non-linear group (including KPCA, KDA, CKFD, 

and LIPKDA). For non-linear DR methods, in this 

paper, the Gaussian RBF kernel ),( yxk  

)/exp(
2
yx  is used. 

 

6.1 Experiment on Face Recognition 
The Yale face database [44] contains 165 grayscale 

images of 15 individuals. There are 11 images per 

subject, one per different facial expressions or 

lighting conditions. The images demonstrate 

variations in lighting conditions (left-light, center-

light, right-light), facial expressions (normal, happy, 

sad, sleep, surprised, and wink), and with/without 

glasses. 

The ORL face database [45] has a total number 

of 400 images of 40 people. There are ten different 

images per subject. For some subjects, the images 

were taken at different times, varying the lighting, 

facial expressions (open / closed eyes, smiling / not 

smiling) and facial details (glasses / no glasses). All 

the images were taken with a tolerance for some 

tilting and rotation. 

The CMU PIE database [46] contains 68 

subjects with 41,368 face images as a whole. The 

face images were captured by 13 synchronized 

cameras and 21 flashes, under varying pose, 

illumination and expression. We choose the five 

near frontal poses (C05, C07, C09, C27, C29) and 

use all the 11,544 images under different 

illuminations and expressions where each person 

has 170 images except a few bad images. 

In our experiments, all the images are manually 

aligned, cropped and resized to have a resolution of 

3232 pixels. Fig.2 shows some examples where 

three sample images of one subject are randomly 

chosen from each database. For each database, we 

randomly partition the images into a training set (n 

images per subject for training) and a test set (the 

remaining images are used for testing). The detailed 

description of partition for the phases of model 

selection and performance evaluation is listed in 

Table 1. The partition procedure is repeated 20 

times and we obtain 20 different training and testing 

sample sets. The first 10 are used for the phase of 
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model selection and the others for the phase of 

performance evaluation. 

 
Fig.2  Samples from (a) Yale, (b) ORL, (c) PIE 

 

In the phase of model selection, our goal is to 

determine proper kernel parameters (i.e., the width 

  of the Gaussian RBF kernel), the dimension of 

the projection subspace for each method, the fusion 

coefficient that determines the weight ratio between 

regular and irregular discriminant information for 

CKFD [38], and the tuning parameter   that 

controls the tradeoff between global geometrical 

structure and local intraclass geometrical variation 

in our proposed algorithms. Since it is very difficult 

to determine these parameters at the same time, a 

stepwise selection strategy is more feasible and thus 

is adopted here [37,38]. Specifically, we fix the 

subspace dimension and the tuning parameter   or 

the fusion coefficient (for LIPKDA or CKFD) in 

advance and try to find the optimal kernel parameter 

for the Gaussian RBF kernel function. To get the 

proper kernel parameter, we use the global-to-local 

search strategy [47]. Then, based on the chosen 

kernel parameter, we can choose the optimal 

subspace dimension for each method. Finally, the 

tuning parameter   or the fusion coefficient is 

determined with respect to the other chosen 

parameters. 

The error rates of the random 10 different splits 

on three face databases with all the tested DR 

algorithms are presented in Fig.3. The training size 

used in Fig.3 is 5, 5, and 30 per subject for Yale, 

ORL, and PIE, respectively. From Fig.3, we can see 

some obvious conclusions as follows: 

1. KPCA has the lowest performance among all 

the tested methods. This is because unlike other 

methods, KPCA yields projection directions 

which have minimal reconstruction error by 

describing as much variance of the data as 

possible, thus the yielded directions are meant 

for reconstruction, not for classification. 

2. Except for KPCA, kernel-based methods 

always achieve lower error rates than their 

corresponding linear counterparts, which 

demonstrates that non-linear features play an 

important role in face recognition. 

3. For either linear or non-linear group, our 

proposed LIPLDA and LIPKDA outperform 

other DR methods. This demonstrates that 

either global geometrical structure or local 

intraclass geometrical variation contains 

important discriminant information for 

classification, the fusion of these two kinds of 

information can achieve better results. 

Moreover, further improvement can be 

achieved if class label is taken into 

consideration when constructing local 

discriminant information. 

4. LPP is slightly better than LDA on Yale 

database, while LDA outperforms LPP on ORL 

and PIE database. This implies that the relative 

importance of local and global structures in 

object recognition depends on specific data sets. 

For example, the local structure may contain 

less effective discriminative information in 

ORL and PIE database than in Yale database. 

We then provide detailed performance 

comparison of the eight methods in Tables 2-4, 

where the mean error rates and standard deviations 

of the 10 different partitions on each data set with 

different training numbers are reported. Except for 

the case that the training data size n is 2 when 

dealing with Yale database, it is clear that the 

proposed LIPLDA and LIPKDA achieves the best 

performance in linear and non-linear groups, 

respectively. From Table 2, we can observe that the 

error rates of LocLDA, LIPLDA and LIPKDA are 

almost the same and are higher than that of LPP 

when the training data size n is 2. This implies that 

for some applications, when the number of training 

sample per subject is extremely low, it is difficult 

for the joint global and local information based 

methods to capture more useful discriminant 

information, thus fusing both local and global 

discriminant information does not help. For the 

results on PIE database listed in Table 4, it is 

interesting to note that the methods in the same 

group (except for KPCA in the non-linear group) all 

achieve comparably low error rates when the 

training data size is large, e.g., n=120. Considering 

the large variance of images in PIE database, this 

may be due to the fact that in some cases when the 

training data size and data variance is large, the 

useful discriminant information of local intraclass 

geometrical variation is corrupted by the densely 

and randomly distributed sample points, causing 

LPP-based techniques to capture no more new 

discriminant information other than global 

geometrical structure information, hence integrating 
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both local and global information makes little help in improving performance.           

 

Fig.3 Comparison of eight DR methods in error rates on three face databases. 
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Table 1 Random partition on three databases for the phases of model selection and performance evaluation 

 
 

Table 2 The average error rates (%) across 10 tests and their standard deviations (std) on Yale database 

 
 

Table 3 The average error rates (%) across 10 tests and their standard deviations (std) on ORL database 

 
 

Table 4 The average error rates (%) across 10 tests and their standard deviations (std) on PIE database 

 
 

 

6.2 Experiment on Artificial Object 

Recognition 

The COIL20 image database [42] contains 1440 

images of 20 objects (72 images per subject). The 

images of each subject were taken every 5 degree 
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apart as the object was rotated on a turntable. Each 

image is of size 128128 . Fig.4 shows some 

examples from the database. 

 

 
Fig.4 Sample images from COIL20 database 

 

In our experiments, each image is resized to 

have a resolution of 6464 and 36 samples are 

randomly chosen from each class for training, while 

the remaining 36 samples are used for testing. In 

this way, we run the system 20 times and obtain 10 

different training and testing sample sets for both 

the phases of model selection and performance 

evaluation. The same methods described in Section 

6.1 are used here for parameter selection. 

The error rates of the random 10 different splits 

on COIL20 database with the tested eight methods 

are presented in Fig.5. The mean error rates and 

standard deviations of the 10 different partitions are 

reported in Table 5. From Fig.5 and Table 5, it can 

be seen that 1) KPCA has the lowest performance 

among all the tested methods and our proposed 

LIPLDA and LIPKDA algorithms consistently 

outperform other methods in linear and non-linear 

group, respectively. 2) Both the global and local 

geometrical information are effective for class 

classification, and fusing both of them can further 

improve recognition accuracy. Moreover, the results 

in Table 5 also prove that local intraclass 

geometrical variation contains more useful 

discriminant information than pure local 

geometrical information. 

 

Table 5 The average error rates (%) across 10 tests and their standard deviations (std) on COIL20 database 

 
 

 
 

Fig.5 Comparison of eight DR methods in error rates on COIL20 database. 

 

 

7 Conclusion, Discussion and Future 

Work 

In this paper, we have proposed a new DR algorithm, 

called local intraclass geometrical variation 

preserving LDA, which integrates both global 

geometrical structure and local intraclass 
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geometrical variation for feature extraction and 

classification. We also show that the proposed 

algorithm can be extended to non-linear DR 

scenarios by applying the kernel trick. The new 

algorithm first casts LDA as a least squares problem 

and then uses a modified locality preserving 

projection as a regularization term to model the 

local intraclass geometrical variation. Extensive 

experimental results on Yale, ORL, PIE, and 

COIL20 image databases demonstrate the 

effectiveness of our approach. 

Considering the results listed in Table 4 which 

show that in some cases when the training data size 

and data variance is large, the useful local structure 

information for class classification is corrupted by 

the densely and randomly distributed sample points, 

it is interesting to think about the possibility of the 

existence of “support” samples by which useful 

local structure information for class classification 

can be fully determined (hereinafter we call these 

samples the local-structure-supported vectors, or 

simply LSS vectors ) and how to locate them. If 

LSS vectors exist, then by finding them in the 

training stage, two benefits can be expected: 1) 

LPP-related operation can be efficiently executed 

since only the LSS vectors are involved in the 

calculation and most of the “noisy” samples are 

neglected; 2) only using the useful local structure 

information for classification and disregarding the 

noisy information, the system performance can be 

further improved. 

One of the tested methods, the CKFD algorithm, 

also achieves relatively good performance in our 

tests. Since CKFD makes full use of two kinds of 

discriminant information (regular and irregular, 

which extracted from the range space and null space 

of the within-class scatter matrix, respectively) 

while LDA and KDA only use regular discriminant 

information, it is also worth to explore the 

possibility of improving system performance by 

combing the idea of CKFD and local intraclass 

variation preserving. 
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